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ABSTRACT 

The impor tance  of t h e  Global Positioning Sys tem (GPS) fo r  global  t i m e  t r a n s f e r  
makes  i t  des i rable  t o  s t e e r  GPS t i m e  a s  closely as possible t o  t h e  UTC ra te .  
Current ly ,  GPS t i m e  is maintained t o  sa t i s fy  two  sys t em requi rements .  First ,  GPS 
t i m e  is s t e e r e d  t o  within one  microsecond of  UTC(USN0) when t h e  leap seconds  
imposed on UTC since 1980 have  been  removed.  Second, t h e  GPS Navigat ion 
Message gives t h e  o f f se t  UTC(USN0) - GPS t i m e  to  users  wi th  an e r ro r  n o t  to 
exceed 100 nanoseconds. User per formance  wauld be improved,  hawever ,  if changes  
in t h e  GPS t i m e  r a t e  were  srnaller and more  gradually imposed than  at present .  
Three cur ren t  developments  are expec ted  to improve GPS t i m e  s t ee r ing  
per formance:  t h e  instal lat ion o f  a s t ab le  clock ensemble  a t  t h e  GPS Master  Con t ro l  
Stat ion:  improvement  of  support ing hardware ;  and applicat ion a f  cont ro l  theory  to 
s t ee r ing  procedures.  

INTRODUCTION 

The Global Positioning Sys tem (GPS) for navigat ion and t i m e  t r ans fe r  is cur rent ly  in 
t h e  development  phase,  and rnust pass  through a number  of  well-defined checkpoin ts  
b e f o r e  becoming operat ional .  Important  conce rns  which a r e  presently the  focus o f  
managemen t  a t t en t ion  include t h e  following: 

1) the  delay in deploying the full cons te l la t ion  o f  Block I1 Navs tar  s a t e l l i t e s ,  in the  
wake  o f  t he  se tback  to  t h e  Space Transportat ion System; 

2) t h e  quest ion whe the r  t h e  Block I s a t e l l i t e s  now opera t ing  will cont inue  to be 
useful ,  s ince  seve ra l  a r e  long pas t  t he  f ive  year  l i fe t ime for  which they  were  
designed; 

3) t h e  d i f f icu l ty  o f  t es t ing  and provinq the  ground control hardware and so f tware  
with the  l imited cons te l la t ion  o f  sa t e l l i t e s  now available. 

Nevertheless ,  GPS has been astonishingly successful  fo r  i t s  nonmili tary users  in providing 
a n  a c c u r a t e  and rel iable means  of  global  t i m e  t ransfer .  For severa l  years ,  
synchroni ra t ion  expe r imen t s  be tween  the  US National  Bureau of  Standards  (NBS) and 
o the r  laboratories ,  and  the  in terna t ional  t imekeeping  c e n t e r  a t  t h e  Par i s  Observatory,  
have been per formed using the  GPS with r epor t ed  accu racy  of 20 nanoseconds, using t h e  
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2ornmon view technique (Ref 1). The difference between UTC as provided by GPS and 
UTC(USNO) is usually less than 40 nsec (Ref 2). Use of the  GPS has  replaced LORAN-C 
as the  transatlantic link between International Atomic Time (TAI) contribution, and 
permit ted  the  inclusion of contributors to  TAI in Asia and Australia (Ref 3). The 
usefulness of GPS, even in i ts  unfinished s t a t e ,  has encouraged observers to  make 
recommendations for i t s  further improvement, and this paper will review progress in 
implementing those recommendations. 

When the  GPS is fully operational, GPS t ime  (hereafter  called Tgps) is to  be related 
to  UTC (Ref 4) and is to satisfy th ree  specifications on accuracy: 

1) Tgps is t o  be maintained to  plus o r  minus one microsecond of UTC time, after 
leap seconds in UTC a r e  removed. Specifically, since there  a r e  no leap seconds in Tgps, 
the  number of leap seconds in UTC accutnulated since the  GPS epoch of OH UTC on 6 
January 1980, LS, is subtracted f rom the  difference Tqps-UTC, so tha t  the  timing 
requirement becomes 

Tgps - UTC - LS < - 1 microsecond. (Ref 5 )  

2) The offset  Tgps - UTC is to  be supplied t o  authorized users with error  not  to  
exceed 110 nanoseconds (nsec) standard deviation (1 sigma) (Ref 6) .  This requirement is 
to  be  tightened to  100 nsec in revised editions of GPS Interface Control Documents. 

3) The Standard Positioning Service ( C I A  code) will be made available t o  a l l  users, 
internationally, with a t ime  equivalent 2 sigma accuracy of  250 nsec o r  be t t e r  (Tgps), f a r  
a user in a known location (Ref 7).  

Notice tha t  specifications (2) and (31, above, imply that in t imes  when selective 
availability is imposed, the  authorized user can obtain UfC to  b e t t e r  than 100 nsec (1 
sigma), and the general  user to  160 nsec (1 sigma) or  bet ter .  

Of course, f ram a purely technical  point of view, t h e  above requirements a r e  far  
from pressing the  s t a t e  of the a r t  in t ime  and frequency control. Thus, the Commit tee  
on Accuracy o f  Time Transfer in Satell i te Systerns reported: 

The ac tua l  performance of the  GPS system reference clock up to  now is only 
mediocre for a cesium clock compared t o  what is seen in similar clocks a t  the  
USNO and in many terminals o f  the  Defense Satellite Communications System 
(DSCS) ... The main reason for  the  poar performance of the  GPS ground clocks has  
been their  adverse operational environment... ... a complete  accounting o f  al l  clock ra tes  and e f f e c t s  in the  ground system 
with respect  to  the  DOD Master Clock will improve performance... 

...p rogress...may make it possible to improve significantly the  accuracy of 
t ime  transfer systems such as  GPS. Yet such improvements might not be made 
because the  s t a ted  requirements a t  the  t ime may not  be t ight  enough t o  make them 
obligatory ... In the  absence o f  t ighter requirements the  sys tem would continue t o  
opera te  a t  t h e  current  level despite the  possibility for improvement. We think this 
would be a mistake...(Ref 8) 



We will  show in th i s  paper  t h a t  many,  if no t  al l ,  user  conce rns  a r e  being met .  Tgps is in 
t h e  process  of becoming a much m o r e  s t ab le  measu re  o f  t i m e  than  former ly ,  within the  
f r amework  of DOD policy. According to  this  policy, r equ i r emen t s  a r e  no t  dr iven  by 
capabil i ty,  but  by mil i ta ry  necessi ty -- t h a t  is, n o t  by US capabi l i ty ,  bu t  by t h e  capabil i ty 
o f  i t s  potent ia l  adversaries .  

GPS TIME SCALE: CURRENT PERFORMANCE 

Figures  1 and 2 i l lus t ra te  the per fo rmance  o f  Tgps with r w ? ~ c t . t o  UTC(USNO). 
Figure 1 shows t h e  o f f se t s  UTC(USN0) - Tgps f r o m  t h e  USNO @GPSVl file,  which 
employs  three day smoothing  on d i f f e rences  rreasurer! het\.leen I JTr-' e x t r a c t ~ r l  f r o m  t h e  
navigat ion messages of all s a t e l l i t e s  and t h e  USNO m a s t e r  c lock ,  given the  known 
position o f  t he  USNO rece iver .  Figure 2 shows t h e  'JTC(:JSbIP) - Tgps r a t e  d i f f e r ~ n c e s  
f r o m  t h e  Sam? file. n u s ,  Figure 2 shows the  f i rs t  der iva t ive  of  t h e  funct ion of Figure 1, 
e x c e p t  for  t h e  e f f e c t s  of d a t a  smoothing,  

All t h e  spec i f ied  r equ i r emen t s  descr ibed  above  were  met. However,  four events 
I show? in Figure 1 caused  t h e  Tgps r a t e  t o  change  by l a rge  amounts ,  which would no t  have  

happened in a n  ideal  sys tem.  
1 

1 

! 
1) An ab rup t  s t e e r  w a s  imposed on day  of year  30 (? February)  Sy opera t ions  
personnel ,  who observed t h a t  t h e  Tgps r a t e  was  high and away f r o m  zero ,  and  who 1 

believed t h a t  t h e  proper ac t ion  w a s  t o  r eve r se  t h e  r a t e .  d 
1 
1 
E At  a pe r fo rmance  analys is  working group meeting a t  the GPS Master  Cont ro l  S ta t ion  on 

1 

11 March, a procedure  was  proposed by which t h e  US Naval Observatory would c a l c u l a t e  
apprqpr ia te  GPS steering p a r a m e t e r s  and  pos t  t h e m  in t h e  USNO @GPSD9 file for  
opera t ions  use. This procedure  e l iminated  la rge  changes  in t h e  Tqps r a t e  during April, 

I May, and June. 

2) On 26 June ,  t h e  Colorado Springs Monitar  S ta t ion  (MS) clock was  ac t ing  as t h e  
GPS m a s t e r  clock. On e i t h e r  26 o r  27 June, t h e  m a s t e r  clock lost ces ium con t ro l  
and r e v e r t e d  t o  q u a r t z  c rys ta l .  The problem was d e t e c t e d  on Monday, 30 June. 
However,  t h e  ro l e  of  m a s t e r  c lock  was swi tched f rom t h e  Colorado t o  t h e  Ascension 
MS a f t e r  t h e  c lock  fa i lure  and be fo re  i t s  de tec t ion .  By t h e  t i m e  t h e  problem was  
d e t e c t e d ,  t h e  s y s t e m  s o f t w a r e  had mapped t h e  de fec t ive  c lock  r a t e  t o  t h e  new 
c l ack ,  and i t  was too l a t e  t o  r ecove r  t he  s y s t e m  by re-es t imat ing  clock s t a t e s  via 
t he  Kalman f i l te r ,  The  reason for t h e  de lay  in detection of the problem is n o t  fully 
known, bu t  a t  present  we  do  not  bel ieve i t  was  due  t o  any  def ic iency  in GPS sys t em 
so f tware .  Aerospace,  IBM, and  t h e  JPO a r e  continuing to examine  both s o f t w a r e  
and ope ra to r  procedures  to  prevent  s imilar  e v e n t s  in t h e  future.  

The USNO/MCS i n t e r f ace  succeeded in re turn ing  t h e  Tgps - UTC r a t e  t o  z e r a ,  b u t  a 
se r i e s  of  communica t ion  line and moni tor  s t a t i on  ha rdware  problems slowed t h e  
recovery.  Steering was  suspended during July because  o f  t h e  la rge  number  o f  m a s t e r  
clock swi t ches  which these  problems m a d e  necessary:  11 July, Ascension to  Colorado;  14 



July, Colorado to Hawaii; 21  July, Hawai i  to  Colorado; 22 July, Colorado to Kwajalein; 
July, Kwajalein t o  Colorado. The ECEST software is designed to  preserve GPS t ime and 
ra te  against discontinuit ies during a master clock change, and the software worked very 
well. The only large change i n  Tgps ra te  between events (2) and (3) occurred around 15 
to 20 July, due to  normal  random behavior o f  the Hawai i  MS clock. (The MS clocks are 
no t  i n  a fu l ly  temperature control led environment.) 

3) The change in  ra te  o f  the UTC(USN0) t ime  scale o f  1 2  nsec/day on 1 September 
is ref lected i n  Figure 1. Due t o  operational problems a t  the Master Control  
Station (not clock related), it was no t  p rac t i ca l  to  steer GPS t ime to  compensate 
fo r  the UTC change un t i l  9 September. 

' 1 

4) Considering the fact  that  Tgps was already wi th in  300 nsec OF the permi t ted 1000 
nsec l i m i t  f r om the norm, and tha t  another clock fai lure might  put us over the l imi t ,  
it was decided to steer by  the maximum permissible ra te  to set a course toward 
zero. 

I n  retrospect, we see that  two  improvements would el iminate sharp changes i n  Tgps ra te  
and would pe rm i t  steering o f  Tgps to  wi th in  50 nsec or less o f  the norm: f irst, a more 
stable master clock, w i t h  more dependable supporting hardware, which would el iminate 
the need for frequent clock switches; and second, clear procedures for control lers to 
fol low and appropriate t raining for systern operators, to minimize the ef fects  o f  c lock- 
related hardware failures. 

USNO PRECISE TIME REFERENCE STATION 

The U.5, Naval Observatory has instal led a Precise Time Reference Station (PTRS) a t  the 
Gt'S Monitor Station (MS) a t  Falcon AFS, CO which can serve, under normal  
circumstances, as the GPS Master Clock. The system consists o f  an ensemble o f  cesium 
beam frequency standards (clocks) which are coordinated by  a data acquisit ion and 
con t ro l  system which is used for the monitor ing o f  various systems and for  the 
communication and exchange o f  data i n  order to  al low the sett ing o f  a stat ion clock 
which is kept  synchronized i n  t ime and frequency to  UTC(USN0) by the cont ro l  o f  a 
phase-microstepper (Ref. 9). The PTRS w i l l  serve as an in ter im system pending a 
Hydrogen Maser Advanced Clock System (HMACS) which w i l l  const i tute the Operational 
Contro l  System Advanced Clock to be instal led a t  the GPSMS, Falcon AFS, CO by the 
Naval Research Laboratory (NRL). 

The present design o f  the Operational Contro l  System (OCS) employs two high 
performance Cesium Beam Frequency Standards. One drives the receiving equipment, 
while the other is used as a spare. The hydrogen maser system w i l l  be based on the 
design o f  the Precise Time Reference Station used by the USNO, which ac ts  as a logical 
intermediate system between the present system and the forthcoming Hydrogen Maser 
Advanced Clock System. 

Various forms o f  t iming data are obtained by  the PTRS. It consists o f  measured 
differences of  various pairs o f  clocks i n  the local  ensemble and observed differences 
between the local  reference clock and GPS t ime as determined through a single channel 
t ime transfer receiver. Through common-view measurements (Ref. 10) wi th  USNO, the 



d r i f t  r a t e  and o f f s e t  o f  t h e  local  r e f e rence  clock a t  t h e  GPSMCS with  r e spec t  to 
uTc(USN0)  c a n  be determined.  Once  these  p a r a m e t e r s  a r e  known ad jus tmen t s  c a n  be 
made t o  t he  phase-microstepper control l ing t h e  local  r e f e r e n c e  clock. These 
ad jus tmen t s  c a n  be made au t o ~ n a t i c a l l y  b y  t h e  USNO ADS or  provision c a n  be made fo r  
local  s t a t i o n  personnel  t o  con t ro l  t he  se t t i ng  of  t h e  phase-microstepper because  o f  
s ecu r i ty  considerat ions.  

As o f  2 1  Dec 1986, a n  a lgor i thm t o  au toma t i ca l ly  con t ro l  and s t e e r  a local  r e f e r e n c e  
c lock  t o  uTC(USNO) h a s  been implemented  within t h e  PTRS a t  Falcon AFS. Figure 3 
shows t h e  resul t s  of  t h a t  s teer ing .  Af ter  a u t o m a t i c  s teer ing  s t a r t e d ,  a n  anomalous  
f requency change  occurred  in t h e  local  ces ium frequency s t anda rd  driving the  PTRS 
Local  R e f e r e n c e  Clock. The length of  t i m e  i t  took t h e  a lgor i thm t o  compensa te  fo r  th is  
change  in frequency was long. The  compensa t ion  could have  been  done  much more  
quickly, bu t  t h e  a lgor i thm t a k e s  into cons idera t ion  t h e  opera t ional  cons t r a in t s  t h a t  a r e  
cu r ren t ly  imposed on t h e  s t ee r ing  of GPS which were  mentioned ear l ie r ,  

Communica t ion  be tween  t h e  USNO and t h e  GPSMCS is e s sen t i a l  f o r  exchange  of d a t a ,  
The dai ly exchange  o f  d a t a  is suf f ic ien t  t o  assure  a d e q u a t e  con t ro l  of t h e  local  r e f e rence  
clock. In t he  e v e n t  t h a t  t h e r e  is loss of communication, then  t h e  local  ensembel  is used 
as a f lywheel  t o  ex t r apo la t e  UTC(USN0). The ensemble  also moni tors  t h e  sho r t - t e rm 
pe r fo rmance  of t h e  local  s e t  of clocks. This al lows t h e  a u t o m a t i c  ident i f ica t ion  of  
poorly per forming c locks  -- thus  improving sys t em performance .  

CONTROL THEORY EQUATIONS AND SIMULATED PERFORMANCE 

The block d i ag ram shown in Figure 4 i l lus t ra tes  t h e  sys tem.  Our goa l  is to set t h e  
f i l t e r  funct ion  p a r a m e t e r s  in such  a way as t o  dr ive  t h e  t i m e  d i f f e rence  t o  zero  be tween  
t h e  o u t p u t  o f  t h e  micro-s tepper  and  t h e  UTC(USN0 MC) as seen  a t  t h e  Opera t ional  
Cont ro l  Segment  (OCS) via t h e  GPS common-view t ime- t r ans fe r  technique.  This t i m e  
d i f f e rence  is given by 

In addit ion t h e  p a r a m e t e r s  need t o  be s e t  in such a way a s  to be insensi t ive t o  
sys t em dis turbances ,  and such t h a t  changes  in frequency of t he  micro-stepper ou tpu t  a r e  
less than  2 x 10-14/day, which is t h e  OCS GPS requi rement  t o  p reven t  t h e  Kalrnan f i l te r  
f rom propagating e r ro r s  which may unduly pe r tu rb  the  naviyat ion solut ions fo r  t h e  users. 

If Y(t-T) is t h e  las t  f requency co r rec t ion  va lue  set in t h e  micro-stepper, t hen  a 
f i l t e r ed  e s t i m a t e  o f  an upda te  frequency co r rec t ion  is given by 

where  t h e  f i r s t  t e r m  dr ives  the  syntoniza t ion  and t h e  second t e rm  dr ives  t h e  
synchronizat ion.  Tau "2" is t h e  nominal  t i m e  in terva l  be tween  measu remen t s  -- in our 
c a s e  i t  is typical ly one  day. All we need  t o  do is pick proper values of m and I for  t h e  
r ange  o f  random var ia t ions  we may encoun te r  in t h e  m a s t e r  clock,  t h e  OCS clock and in 
the  common-view t h e  new o u t p u t  t i m e  added by the micro-stepper is given by 



& ( t + T )  - y ct, - Y (t112 (3) 
The common-view t i m e  t r ans fe r  noise h a s  been measured  to be a whi t e  phase 

modulat ion (PM) process  wi th  a s tandard  devia t ion  o f  about  1 t o  2 ns. The random 
var ia t ions  of t h e  m a s t e r  c lock  and t h e  OCS clock have  been  measured  t o  be a f l icker  
noise FM like process  in t h e  range  of  1 t o  4 x 10-14 for  d- (T), and 1 d a y 5  Z f a f e w  
weeks. 3 

Figures 5 and 6 a r e  t h e  measured  and s imula ted  f requency stabiliti 'es. We picked a 
nominal  wors t  c a s e  and  a nominal  bes t  c a s e  for  s imulat ion purposes. The worst  c a s e  
condit ions a r e  p lo t t ed  in Figures 7 and 8 f o r  t h e  frequency s tab i l i t ies  of  t h e  micro-  
s tepper ' s  s t e e r e d  output ,  x (t),  and  o f  t h e  t i m e  a m o u n t s  t o  less t han  2 x 10-14, which is 
t he  design goal;  and the  s tandard  deviat ion o f  t h e  residuals  around a l inear- least-squares 
f i t  t o  t h e  t i m e  d i f f e rence  ou tpu t  amounted  t o  91-13. 

Figures 9 and 10 are t h e  corresponding f igures  f o r  the nominal  bes t  case 
simulat ion.  In this  c a s e  t h e  day t o  day r m s  s t ee r ing  co r rec t ion  a m o u n t s  t o  0.8 x 10-14, 
and t h e  s tandard  devia t ion  of the  residuals  around a l inear- least-squares f i t  t o  t he  t i m e  
d i f f e rence  ou tpu t  amounted  t o  3ns. 

Figure 11 i l lus t ra tes  t h e  t r ans i en t  response t o  a beginning t i m e  and f requency 
er ror .  Through simulat ion and a n  empir ica l  approach t o  se t t i ng  t h e  pa rame te r s ,  we were  
able to  find a single s e t  which gave  t h e  above  pe r fo rmance  f o r  t h e  nominal  wors t  ca se ,  i 

).: 
t h e  naminal  bes t  c a s e  and for  t h e  t r ans i en t  response. The values we  found were  m = 2.5 
and 1 = 0.4 with = 1 day. 

CONCLUSIONS 

In o rde r  t o  improve  GPS f o r  the  global distr ibut ion of  precise t i m e ,  a number  o f  
modif ica t ions  t o  exist ing procedures  have  been  proposed and a r e  in t h e  process  o f  being 
implemented.  Improved t imekeeping  hardware  a t  the  Master  Cont ro l  S ta t ion  will 
minimize  switching of  t h e  des ignated  GPS m a s t e r  clock among t h e  various monitor  
s ta t ions .  This will  help r educe  t h e  e f f e c t  o f  m a s t e r  clock switching on s t ee r ing  when i t  
is being irnplernented by so f tware  techniques. The applicat ion of  con t ro l  theory t o  t i m e  
s t ee r ing  procedures  will  dampen  any sudden changes  in GPS mas te r  c lock  r a t e .  The users  
o f  prec ise  t i m e  will benef i t  f r o m  these  improvements  in t iming pe r fo rmance  because  the  
t i m e  signals f r o m  GPS will be modeled wi th  a higher deg ree  o f  rel iabi l i ty t han  
previously. 
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Figure 1 - Differences (in nanoseconds) between UTC(USN0)  and GPS Time. Data has 
been filtered using three day smoothing. 

UTC (USNO) - GPS Rate 

Figure 2 - Differences (in nanoseconds/day) between the rate of UTC(USNO) and GPS 
Time. The data represents t h e  first derivative of t h e  data in Figure 1, excep t  for the 
effects of smoothing. 



UTC(USN0) - PTRS(Loca1 Reference) 
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Figure 3 - Differences between uTC(USNO) and the Local Reference Clock of the USNO 
Precise Time Reference Station (PTRS) in nanoseconds. 

Figure 4 - Block ljiagrain of the Control Theory Steering Procedures. 
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Figure 5 - Measured Frequency Stabilities between UTC(USN0, MC) and UTC(NBS). 
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Figure 6 - Simulated Frequency Stabilities between U?'C(USNO) and GPS Time. 
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Figure 7 - Frequency Stability of the Steered Microstepper Output under worst case 
conditions. 3 
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Figure 8 - Slrnul~ ted  Error Signal Ijetween UTC(USNO) and GPS Time for l/f PM noise of 
4x10-14 (worst case condition). 
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Figure 9 - 
conditions. 
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Frequency Stability of the Steered Microstepper Output under 
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Pigure 10 - Simulated Error Signal between UTC(USNO) and GPS Time for l / f  FM noise 
of 1x10-14 (best case condition). 
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Figure 11 - Simulated response to  a beginning t i m e  s tep  and a frequency error. 




